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ABSTRACT: It is easy to extrapolate current trends to see where

technologies relating to information systems in astrophysics and

other disciplines will be by the end of the decade. These

technologies include mineaturization, multiprocessing, software

technology, networking, databases, graphics, pattern computation,

and interdisciplinary studies. It is less easy to see what limits our

current paradigms place on our thinking about technologies that

will allow us to understand the laws governing very large systems

about which we have large datasets. Three limiting paradigms are:

saving all the bits collected by instruments or generated by

supercomputers, obtaining technology for information compression,

storage, and retrieval off the shelf, and the linear model of

innovation. We must extend these paradigms to meet our goals for

information technology at the end of the decade.

I have been asked to present some speculations on technologies that will be

available to us in eleven years just after the turn of the century. I have even been

asked to be "visionary"! I will indeed spend a few minutes telling you what I see.

Speculating is for me a pleasant and straightforward task. We can look for

impressive developments in hardware, software, networking, databases, graphics,

design aids, and interdisciplinary studies. A new style of computation -- pattern

computing -- is emerging in the form of neural networks and associative memories

that will be very helpful to us later in the decade.
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What I can see is nonetheless of limited interest for me. I am far more

interested in questions about what I cannot see. How do our traditional ways of

thinking about our science limit the questions we ask and prevent us from seeing

new approaches that will produce the innovations we require? What paradigms are
we living in? What are the blind spots induced by those paradigms? What are we

missing? What can we see new by stepping outside our paradigms? In short, what
do we not see, and do not see that we do not see it?

It is easy for us to challenge someone else's paradigms -- and often unpleasant

when someone challenges our own. The challenge often produces a startle

reaction: we automatically find ourselves getting irritated, or saying "this cannot

be right," or declaring "this person doesn't know what he's talking about."

I am sensitive to this. I want to challenge three of the paradigms you and I

live in that affect our approach to information systems. At the same time, I want to

offer some new possibilities that appear to those willing to step outside. Some of

my challenges may irritate you. I ask that you say, "Oh! That's just my startle
reaction," and listen on anyway.

What we can see now

By extrapolating today's trends, we can make educated guesses about eight
major technologies by AD 2001.

MINIATURIZATION. We continue to refine our methods of building

smaller, more power-frugal circuits. We routinely design circuits today with
100,000 transistors in the same amount of silicon as was in the first commercial

transistors 25 years ago. The recent Sun SPARC RISC computer is faster and has

more memory than the IBM 3033 ten years ago -- and costs under $5,000. DRAM

memory chips have gone from 16K bits ten years ago to close to a million bits now

and are likely to be 10 times that by the end of the decade. Look for chips of the

year 2000 to offer speeds and memory comparable to today's Cray computers. Our

design aids are so good that we can customize chips for special applications; look

for "silicon subroutines" to be common after another ten years.

MULTIPROCESSING. Ten years ago, an advanced commercial

multiprocessor was a machine with two to sixteen processing units. In one decade

we have made considerable progress in mastering machines with thousands of

processors. Such multicomputers are a necessity for our teraops processing goals
of the mid to late 1990s. Today's Connection Machine has 65,536 (=216)

processors; by the mid 1990s, look for one with just over 1,000,000 (=220)

processors; by the late 1990s, look for machines of this type with over 8,000,000

processors. Ix)ok for the individual processors to have speeds beyond 100 mflops

apiece. Look for considerable integration of processing, memory, and

communication on each chip.

SOFTWARE TECHNOLOGY. For many years we have invested heavily in

numerical software for new machines. This has paid off handsomely: since the

1940s, John Rice tells us, our PDE-solving systems have improved in speed by a
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factorof 1012; hardware improvements account for a factor of 106, algorithm

improvements for the other factor of 106 . Today's research efforts are showing us

how to program the multiprocessors effectively. We are within reach of

programming environments that will allow us to design highly parallel programs

quickly and correcdy by the mid to late 1990s.

NETWORKING. The globe is crisscrossed with communication links

connecting computers, telephones, fax, radios, and televisions. I call this the

phenomenon of worldnet. The distinction between a workstation and the

worldwide network is blurring. In just ten years a workstation has shifted from

being a personal toolkit to being a portal into the world; look for continued

transformation so that by the end of the century we wear our computers, converse

with them, and converse with others through them. Today's Research Internet

backbone transfers data at the rate of 1.5 mbps, and NSFNET will install 45 mbps

within the year. The gigabit optical fiber network should be with us by the mid

1990s. By the turn of the century our terrestrial networks will operate at 10 to 100

times that speed, depending mostly on advances in optical switch technologies and

protocols. Look for the current satellite links, now running at 300 mbps, to be

operating at speeds comparable with the terrestrial network. Look for networking

infrastructure to reach into a sizable portion of businesses and homes in the US,

Europe, And japan. Look for portable computers to be routinely connected by
cellular links into the world network.

DATABASES. Mass storage systems and systems for archiving and

retrieving information have been persistent problems -- our reach far exceeds our

grasp. The largest direct access computational memory today is on the Cray YMP,

256 million 64-bit words. Look for this to increase significantly on multiprocessors

where we can implement a uniform machine-wide virtual address space with little

penalty for access between computers. Look for optical stores to become practical,

replacing large disk storage "farms" with capacities of 1015 bits. The biggest

problem will be finding information in these storage systems rather than

transferring it in or out.

GRAPHICS. Look for continued improvements in resolution and function.

What we today call HDTV will be the norm. Graphics libraries will permit a wide

range of visualizations across many disciplines. Animations in real time will be

routine. Head-mounted displays, data gloves, and other technologies associated

with virtual reality will be common for scientific visualization and simulation.

PATI'ERN COMPUTATION. Three styles of computation are widely used

today: signal processing, numeric processing, and symbolic processing. (Symbolic

processing is the basis of machines that do logical inference within ai systems _nd

languages like Prolog.) A fourth style is emerging, variously called pattern

processing, associative processing, and neural processing. Its computational model

-- a network of many-input threshold circuits -- is inspired by biological systems.

These neural networks can store and retrieve large bit vectors that represent

encoded sensory patterns. Although such systems have been the subject of

speculation since the beginning of the era of electronic computing (1940s), circuit

technology did not permit their construction until recently. Many new approaches

to vision and speech recognition are now being tested in neural networks. Look for
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this type of computing to attain maturity by the end of the century. It will not

replace the other three types, but will certainly augment them. It will provide

learning capabilities that are not attainable within role-based expert systems.

INTERDISCIPLINARY STUDIES. Look for more interactions between

experts in different disciplines. For example, many parallel algorithms now being
developed for numerical computing will be transferred into earth sciences

simulations and data analyses.

What we cannot see

Most of us here are scientists and engineers. Most of us here have worked in

one discipline most of our lives. We are mostly men and mostly white. Most of us
come from Judeo-Christian traditions.

These statements are facts about our common cultural background. They are

neither "good" nor "bad"; they inform us about the body of shared assumptions
that constitute our common wisdom about how science works, what science is

important for public policy, what is innovation, what questions are worth

investigating, what is true, what is good research, which data are valuable, and

many similar questions. We seldom reflect on the common presuppositions given
to us by our traditions. Most of the time, we are not even aware of our

presuppositions. We are blind to them.

Let me give you an example. We often use the word paradigm to refer to the

framework of preunderstandings in which we interpret the world. We have been

taught, and we teach our students, that the great discoveries of science have

happened when the discoverer challenged the current paradigm and stepped outside
of it. At the same time, as recognized masters of our scientific domains, we resist

changes that might leave us in less esteemed positions. Thus we have a love-hate

relationship with paradigms: we like challenging the paradigms of others and we

dislike others challenging our own. We especially dislike anyone suggesting that
we are blind in some domain of importance to us.

Let me give you another example. As scientists we say that the scientific

method consists of formulating hypotheses about the world, using them to make

predictions, performing experiments to collect data, and analyzing the data for

support or contradiction of the hypotheses. This method is based on a

presupposition that the world is a fixed reality to be discovered. Our job is to probe

the world with experiments and pass on our findings as validated models. In this

preunderstanding, it is natural to say that someone discovered a new particle,

discovered a new theorem, or discovered a new fact about the world; it sounds

strange to say that someone invented a new particle, invented a new theorem, or

invented a new fact about the world. And yet some scientists, notably chemists and

molecular biologists, are engaged in a process of invention rather than discovery.

The terminology of invention is natural in the paradigm of engineering. Have you

ever noticed that physicists and mathematicians like to talk about the great

discoveries of science while chemists and engineers like to talk about the great

inventions? Because their paradigms are different, scientists and engineers often
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disagree on what is "fundamental".

In his book, Science in Action [Harvard University Press, 1987], Bruno Latour

painstakingly analyzes literature before, during, and after great discoveries and

great inventions. He distinguishes between the simplified story we tell about

science when looking back after the fact, and the complex web of conversations,

debates, and controversies that exist before the "discovery" is accepted by the

community. By tracing the literature, he demonstrates that statements are elevated

to the status of "facts" only after no one has been able to mount a convincing

dissent. Thus, he says, science is a process of constructing facts. Not just any

statement can be accepted as fact -- a large community of people must accept the

statement and must be incapable with resources and methods available to them of

adducing new evidence that casts doubt on the statement.

Latour calls on the two-faced god Janus to contrast the retrospective view (an

old man looking leftward, seeing "ready made science") with the in-action present

view (young man looking rightward, seeing "science in the making"). See Figure

1. Examples of statements made by Latour's Janus are:

OLD: "Just get the facts straight."
YOUNG: "Get rid of the useless facts."

OLD: "Just get the most efficient machine."

YOUNG: "Decide on what efficiency should be."

OLD: "Once the machine works, people will be convinced."

YOUNG: "The machine will work when all the relevant people are convinced."

OLD: "When things are true, they hold."

YOUNG: "When things hold, they start becoming true."

OLD: "Science is not bent by the multitude of opinions."

YOUNG: "How to be stronger than the multitude of opinions.'?"

OLD: "Nature is the cause that allowed the controversies to be settled."

YOUNG: "Nature will be the consequence of the settlement."

It is interesting that although the young man's statements are typical of the

ones we make while "doing science", we quickly adopt the old man's views as

soon as the "science is done." Our research papers, for example, describe orderly,

systematic investigations proceeding from problem descriptions, to experiments, to

data collections and analyses, to conclusions. The description tells a story that

never happened: it fits neatly inside the scientific-method paradigm while the

discovery itself is made inside a network of ongoing conversations. We do this

also with the history of science. We trace an idea back to its roots, giving the first

articulator the full credit. (If the idea is great enough, we give its original

articulator a Nobel Prize.) The complex, dynamic web of conversations and

controversies disappears. I will argue shortly that this paradigm of science is
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FIGURE 1. In his book, Science in Action, Bruno Latour illustrates the contrasts between the

view of science after a statement has been accepted as fact (leftward looking face of Janus)
and the view while statements are being defined and debated (rightward looking face).
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linked to our nation's difficulties to compete effectively in world markets.

I see three major paradigms that shape our thinking about information

systems. The first I call saving all the bits. Those in this paradigm argue that all

bits from instruments and massive computations must be saved, either because the

cost of recovering them is too high or because some important discovery might be

lost forever. I will show two examples of new technologies that offer the

possibility of increasing our power to make new discoveries without having to save
all the bits.

The second of the three paradigms I call obtaining technology off the shelf.

Those in this paradigm argue that NASA ought not sponsor its own research in

information system technologies because research money ought to be spent on

science and because the needed technology can be acquired from the commercial

sector. I argue that this paradigm equates networking with connectivity and

ignores networking as a way of collaborating. I argue that NASA has unique

mission requirements that do not now appear in the market, and will not over the

coming decade; thus I see that the commercial sector will be incapable of

delivering the innovations NASA requires.

The third paradigm I call the linear model of innovation. Those in this

paradigm argue that every innovation begins with a discovery or invention and

passes successively through the stages of development, production, and marketing

on the way to the customer. They see research as the noble beginning of all

innovation. I argue that in reality a cyclical model is at work. Most innovation is

accomplished by refinements over successive generations of a science or

technology. I argue that NASA must design research programs to create and

sustain cycles of innovation that involve NASA, university researchers, and

commercial partners. The Numerical Aerodynamic Simulation (NAS) project is a

successful instance of a cyclical model of innovation in NASA.

I will now discuss each of these paradigms in more detail.

Saving all the bits

I often hear from colleagues in earth sciences, astronomy, physics, and other

disciplines that after we start up an expensive instrument or complete a massive

computation, we must save all the bits generated by that instrument or

computation. The arguments for this are first, the cost of the instrument or

computation is so great that we cannot afford the loss of the information produced,

and second, some rare event may be recorded in those bits and their loss would be a

great loss for science. I have heard debates in which these points are made with

such vehemence that I am left with the impression that saving the bits is not merely

a question of cost, it is a moral imperative.

Those in this paradigm are perforce limited to questions about saving and

moving bits. How shall we build a network with sufficient bandwidth to bring all

the bits from instruments to us? How shall we build storage devices to hold them?
How shall we build retrieval mechanisms that allow us to access them from around
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theworld? Data compression is of interest only if it is "lossless", i.e., it is a

reversible mapping from the original data to the compressed data. "Smart

instruments" that detect patterns in the data and inform us of those patterns are of

little interest -- it is claimed, for example, that such "on-board processing"

delayed the discovery of the ozone hole for several years.

As we speak, the Hubble Space Telescope is in limited operation, sending us

on the order of 300 mbps via the TDRSS satellite link network to Goddard. This

will be joined shortly with the ACT (advanced communications technology)

satellite and, in a few years, the network of satellites making up the EOS (earth

observing system). These are just a few of the growing number of advanced

instruments we have put into space, any one of which can produce data streams at

the rate of hundreds of mbps.

Let us do some simple arithmetic with the EOS alone. This system is

expected to produce between 1012 and 1013 bits per day. (This is an enormous

number. If we had one ant carrying each of those bits, a day's transmission would

make a chain of ants stretching all the way from earth to sun.) It would take 2,500

CDs (compact optical disks) at about 4 gigabits capacity each to hold one day's

data. Increases in optical storage density may allow this number to be reduced by a

factor of 10 or 100 by the time EOS is on line. Where will all this storage be? Is

Goddard going to be responsible for recording 2,500 disks daily? Even the

national gigabit network will be inadequate to divert all those streams to other sites

for recording elsewhere. And if we succeed in recording all the bits, how is anyone

going to access them? How do I as a scientist ask for the records that might

contain evidence of a particular event of interest? I am asking for a search of 2,500

disks representing one day's observations, 0.9 million disks for a year's, or 9

million disks if I want to examine trends over a ten-year period.

This scenario doesn't mention the data fusion problem that arises when an

investigator requests to study several different data sources simultaneously for

correlations. I have heard it said that advanced graphics will allowthe investigator

to visualize all the bits and see the correlations. But this statement is too glib: it

hides the limitations on bandwidth of networks, speeds of graphics devices,

methods of storing and retrieving the data, and algorithms for performing the
correlations.

In short, the paradigm of saving all the bits forces us into an impossible

situation: the rate and volume of the bits overwhelm our networks, storage devices,

retrieval systems, and human capacities of comprehension.

Suppose we step outside the paradigm and say that there are important cases
in which we do not need all the bits. What machines can we build that will monitor

the data stream of an instrument, or sift through a database of recordings, and

propose for us a statistical summary of what's there?

Let me give an example under test jointly by RIACS and the Artificial

Intelligence Branch at NASA-Ames. Peter Cheeseman has developed a program

called Autoclass that uses Bayesian inference to automatically discover the

smallest set of statistically distinguishable classes of objects present in a database.

In 1987 Autoclass was applied to the 5,425 records of spectra observed by the
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InfraredAstronomicalSatellite(IRAS) in 1983and 1984.Eachrecordcontained
two celestialcoordinatesand94 intensitiesatpreselectedfrequencesin therange
of wavelengths7 to 23microns. Autoclass reported most of the classes previously

observed by astronomers, and most of the differences were acknowledged by

astronomers as clearly representing unknown physical phenomena. NASA reissued

the star catalog for the IRAS objects based on Autoclass's results.

One of these discoveries is shown in the accompanying Figure 2. Previous

analyses had identified a set of 297 objects with strong silicate spectra. Autoclass

partitioned this set into two parts. The class on the top left (171 objects) has a peak

at 9.7 microns and the class on the top right (126 objects) has a peak at 10.0

microns. When the objects are plotted on a star map by their celestial coordinates

(bottom), the right set shows a marked tendency to cluster around the galactic

plane, confirming that the classification represents real differences between the

classes of objects. Astronomers are studying this phenomenon to determine the

cause.

There is nothing magic about Autoclass. It is a machine that can take a large

set of records and group them into similarity classes using Bayesian inference. It is

thus an instrument that permits finer resolution than is possible with the unaided

human eye. It does not need to know anything about the discipline in which the

data were collected; it does its work directly on the raw data.

The important point illustrated by Autoclass is that a machine can isolate a

pattern that otherwise would have escaped notice by human observers. The

machine enabled new discoveries, otherwise impossible.

Cheeseman suggests that an Autoclass analyzer could be attached to an

instrument, where it would monitor the data stream and form its own assay of the

distinguishable classes. It would transmit the class descriptions to human

observers on the ground at significant reductions in bandwidth. If the human

observer wanted to see all the details of specific objects, he could send a command

instructing the analyzer to pipe all the bits straight through.

Let me give a second example. Also at RIACS we have a project studying an

associative memory architecture called SDM (sparse distributed memory). See

Figure 3. In the SDM each memory cell contains a name field (a vector of bits) and

a data field (a vector of counters). When an address pattern (a bit vector) is

presented, address decoders at all the cells simultaneously determine whether the

given address and their own names are close by some measure such as Hamming

distance; all the cells for which this is true participate in the read or write operation

requested relative to the given address. Writing is accomplished by adding an

image of the data vector to these counters, reading by statistically reconstructing a

bit vector from these counters. We have a simulator running on the Connection

Machine; it simulates a memory of 100,000 cells with bit vector lengths of 256,

and it cycles 10 times a second.

In one experiment David Rogers sought to learn if a variant of SDM could
learn the correlations between measurements and desired results. He fed SDM a

stream of approximately 58,000 records of weather data from a station in Australia.
Each record contained 12 measurements and a bit indicating whether rain fell in the
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FIGURE 3. The genetic sparse distributed memory is an associative memory system whose
addresses are dynamically modified during training so that they collectively evolve toward a
set that is capable of best prediction of a future data element. The idea of address
modification is based on Holland's genetic algorithm.
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measurement period. The measurements were encoded into a 256-bit vector, and

the rain bit of the next period was used as data. Just before the actual next-period
rain bit was stored, the SDM was asked to retrieve its version of the bit. If the

retrieved bit agreed with the bit about to be written, each selected cell had 1 added

to its "success count". At intervals the two highest scoring cells were cross-bred

by combining pieces of their names; the new name thus created replaced the name

in the lowest- scoring cell. This is the principle used in genetic algorithms, and

Rogers calls his variant the genetic memory.

At the end of the experiment, Rogers found that the memory gave accurate

predictions of rain. By examining the name fields of all memory cells, he was able
to determine which subset of the measurements were the most correlated with the

occurrence of rain in the next measurement period.

The genetic memory is a machine that can be fed a stream of data. It

organizes itself to become a consistent predictor of a specified pattern.

Both these examples show that it is possible to build machines that can

recognize or predict patterns in data without knowing the "meaning" of the

patterns. Such machines may eventually be fast enough to deal with large data

streams in real time. By the end of the decade they may be well enough advanced

that they can serve on space probes and space-borne instruments, where they can

monitor streams that would be incomprehensible to us directly. With these

machines, we can significantly reduce the number of bits that must be saved, and

we can increase the likelihood that we will not lose latent discoveries by burying

them forever in a large database. The same machines can also pore through

databases looking for patterns and forming class descriptions for all the bits we've
already saved.

I am not alone in this conclusion. In Science, 11 May 1990, journalist

Mitchell Waldrop documents the rising concern in the science community about

the volumes of data that will be generated by supercomputers and by instruments.

He likens the coming situation with drinking from a fire hose: "Instant access to

far-flung databases could soon be a reality, but how will we swallow a trillion bytes

a day?" He is drawn to a proposal by Robert Kahn and Vinton Cerf to create

surrogate processes that would roam the networks looking for data of a particular

kind, returning home with their findings. Called knowbots (short for knowledge

robots), these processes would resemble benign viruses in their operation. The

article ends without saying how knowbots might work. What do you suppose

would go inside? Machines that perform automatic discovery, pattern matching,
and prediction.

Technology off the shelf

Over the past decade I've repeatedly heard representatives of scientific

disciplines giving testimony to NSF, NASA, ONR, advising those agencies against

engaging in research on networking. They have argued that the research dollars

should be spent on science, that networking is technology, not science, and that the

government can acquire the technology it needs "off the shelf" from the
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commercialsector.This wayof thinkinghasstoppedNASA from engagingin
researchon its networkingneeds,andit nearlystoppedtheNSFnetfrom being
formed. Thehighperformancecomputinginitiative plandepartsonly slightly from
thiswayof thinkingby specifyingatechnologyprojectto producea gigabit
networkby 1995thatwill betakenoverby thecommercialsector.This paradigm
doesnotdistinguishnetworkingasconnectivityfrom networkingasawayof
collaborating.

I'm notchallengingthestatementthatwemustbuild aninfrastructureof
networksanddatabasesthatwill allow datato bestored,shared,andanalyzedin
thescientificcommunity. Manyof thecomponentsof suchaninfrastructureare(or
will be)availablein thecommercialmarket. In thosecases,it is appropriatefor the
governmentto acquiretheneededtechnologies"off theshelf."

I amchallengingthenotionthatall NASA's networkingneedscan(or will )
besatisfiablecommercially.I amspecificallychallengingthenotionthatNASA
needsnoresearcheffortsof its own thattreatproblemsarisingin thecontextof
largenetworksof computers,databases,instruments-- andscientistscollaborating
overlargedistances.

NASA is theonly organizationonearthwith thedataneedsof themagnitudes
outlinedearlier. Nocommercialorganizationhassuchneeds.No commerical
customersdemandproductsthatwouldcopewith suchbandwidthsor volumesof
data. NASA hasdefinedauniquesetof requirements.We aresimplynot goingto
copewith all thedatawith ourcurrentwaysof thinking:weneedwholly newways
of thinkingaboutandhandlingdata. This is truefor eachmajorNASA scientific
community. NASA earthscientists,I say,mustorganizetheir own research
programto studydatacollection,recording,retrieval,fusion,analysis,and
understandingin their disciplines.Nooneelseis looking atthesequestions.

Linear model of innovation

Many innovations will be needed to achieve the goals for information systems

by the turn of the century. Most of us think about how to bring those innovations

about within the confines of a "linear model" of innovation. (See Figure 4.) This

is the familiar model that says every innovation begins with a discovery or

invention (usually by some individual or at some institution) and passes

successively through the stages of development, production, and marketing on the
way to the customer. We use the term research to refer to institutional activities

that systematically seek to spawn new discoveries that feed the pipeline. We see

research as the noble beginning of all innovation.

In my discussion of Latour, I noted that this model seems to fit what we see

when we look back from the present to the past moment when the idea was first

articulated. That retrospective history seems to contain the stages noted above.

But the retrospective model is limiting because it hides the intricate webs of

conversation, false starts, controversies, and iterations that take place while we

seek to make a technology usable by many people.
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FIGURE 4. Steve Kline, among others, has challenged the linear model of innovation, which
holds that ideas are generated during research and then flow through a pipeline of
development, production, and marketing on the way to customers. He depicts the model as
shown here.
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Stephen Jay Kline published a report called "Innovation Styles in Japan and

the United States [Stanford University, Department of Mechanical Engineering,

Report INN-3, December 1989]. He analyzed in some detail how the actual

process of innovation differs markedly from the linear model given to us by our

cultural paradigm. Kline reprints a figure compiled by Christopher Hill of the

Library of Congress in 1986 showing an inverse relation between Nobel Prizes and

growth of GNP, just the opposite of what one would expect if innovation took

place according to the linear model. (See Figure 5.) Kline shows that an accurate

model consists of many feedback cycles among the various stages of development

of a technology: research permeates and sustains all the stages.

Writing in Scientific American in June 1990, Ralph Gomory also criticizes the

linear model and says that a cyclical model is actually at work in most cases of

innovation. While some innovations have been introduced by a linear model, most

occur by successive refinements over a series of generations of a product.

Why is this relevant to NASA? As we lay our plans for research in during the

1990s, we must not fall into the trap of thinking that NASA earth scientists will be

the original source of many future discoveries that will benefit all of earth science

and then eventually all of society. We must instead design our research programs

to create and sustain cycles of innovation that involve NASA, university

researchers, and commercial partners. We are much more likely to reach our goals

of 2001 AD by engaging in cycles of innovation than by setting ourselves up to be

either the source of new ideas or the recipient of new ideas generated by others.

The Numerical Aerodynamic Simulation (NAS) facility at Ames illustrates

the approach. A major component of the work needed to achieve the national goal

of complete simulation of an aircraft inside a computer is technological: namely

the acquisition of supercomputers. The planners of the NAS, however, recognized

that the architectures of supercomputers such as the Cray- 1 and Cyber 205 could

not be extended to deliver the needed teraflops computational rates. They argued

that the requirement for such speeds was unique to NASA, and thus NASA would

have to work closely with commercial partners to foster the development of

supercomputers with thousands of processors. They argued that a research

component was also needed to develop entirely new kinds of algorithms to exploit
the machines and assist the aircraft companies to use the NAS. The NAS they

designed has many cycles of activity in it including partnerships with industry,

aircraft companies, other supercomputing centers, and universities; it also has a

research group on site supporting all these activities. This facility embodies a

cyclical model of innovation. It is of obvious value to the US aircraft industry and

the nation. It is a smashing success.

Conclusions

We live in three paradigms that can impose severe limitations on what NASA

can accomplish in an information systems program during the 1990s. It is not

necessary to give up these paradigms; they have been useful in the past. It is,

however, necessary to avoid being limited by them.
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FIGURE 5. Kline cites a Congressional study by Hill in 1986 as striking evidence against the
linear model. Hill found inverse correlation between the number of Nobel Prizes and the

annual growth of a country's economy.

C. Hill, Congressional Research Service Stucly, Aprtl 16, 1986.
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To go beyond the save-all-the-bits way of thinking, I recommend that NASA

include research on machines that can perform automatic discovery, pattern

identification, prediction, correlation, and fusion. Such machines would allow us

to make more discoveries without having to store all the bits generated by

instruments. They could be part of the instrument itself, and could be shut off

during intervals when all the bits are needed.

To go beyond the technology-off-the-shelf way of thinking, I recommend that
NASA declare that most of its requirements in information management are unique

to the agency because of the magnitude of the needed bandwidths and storage and

the size of the participating scientific community. I recommend that NASA

undertake research programs that will assure the presence of technology needed for

the NASA missions.

To go beyond the linear-model-of-innovation way of thinking, I recommend

that NASA position itself as a sustainer of the cycles of innovation that will be

needed to produce the technologies required for NASA missions in earth sciences

during the late 1990s.
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